

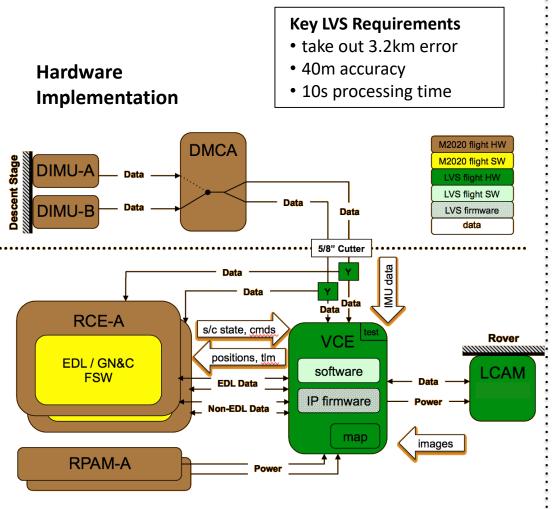
Mars 2020 Terrain Relative Navigation Verification & Validation

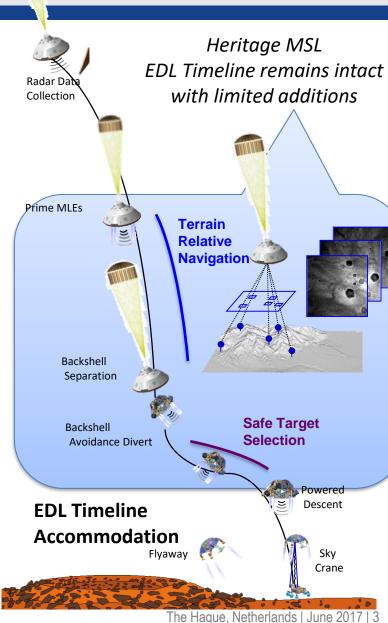
Aaron Stehura

Paul Brugarolas, Allen Chen, Andrew Johnson, Swati Mohan, Jim Montgomery

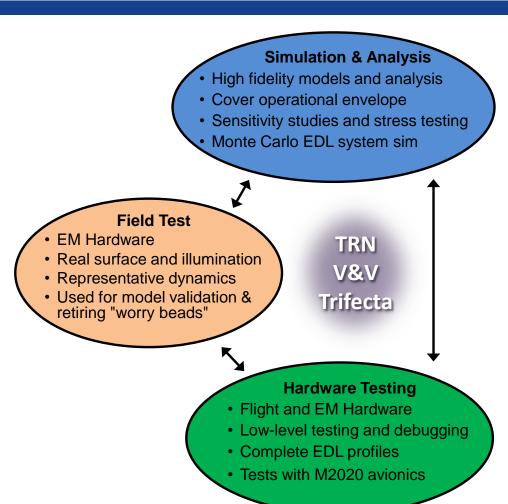
14th International Planetary Probe Workshop The Hague, Netherlands June 13th, 2017

Mars 2020 Project


Summary


- TRN: a new, enabling sensor for Mars 2020
- V&V philosophy: trifecta approach
 - Hardware testing
 - Field testing
 - Simulation & analysis
- V&V in practice
 - Key paradigm: hardware delivery & model certification pave the way for high fidelity simulation
- Current status

TRN Overview

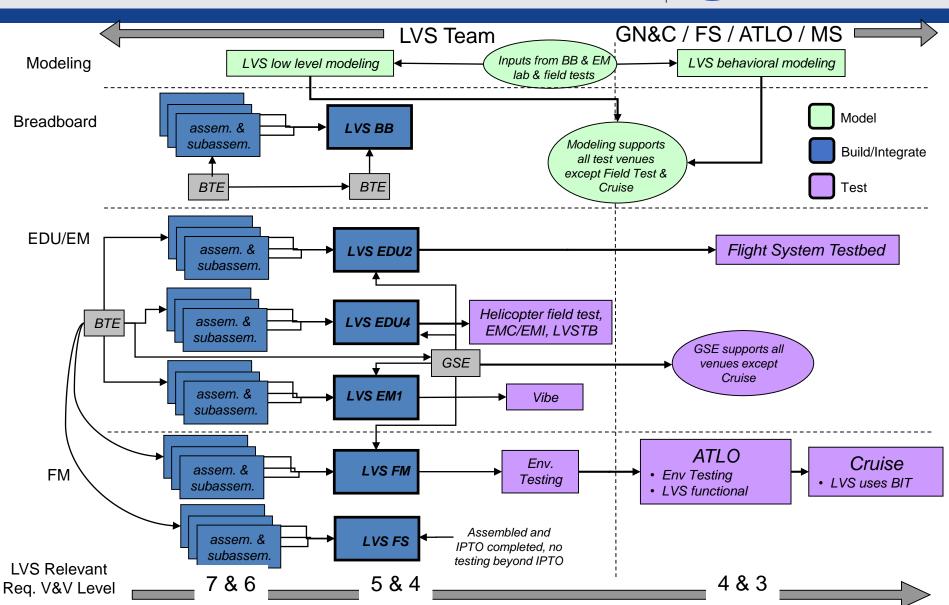


TRN is loosely coupled to the rest of the EDL system

TRN Verification Activities Approach

- MSL landing radar (TDS) V&V program used same "Trifecta" approach
- Testing spans multiple dimensions
 - Test As You Fly
 - Stress Testing expand the envelope
 - Worry Beads sensitivity studies
- Each V&V venue has a different degree of hardware and software fidelity
 - All contain EDL/GNC FSW Core
 - Some contain modeled components:
 VCE, LCAM, DIMU
 - LVS: simple behavioral model, high fidelity simulation, or flight HWIL
- Validation
 - Field tests
 - Multiple Mars datasets
 - HWIL testing w/ spacecraft

TRN V&V Trifecta Coverage



V&V Trifecta covers all key environmental and performance parameters, just not at the same time

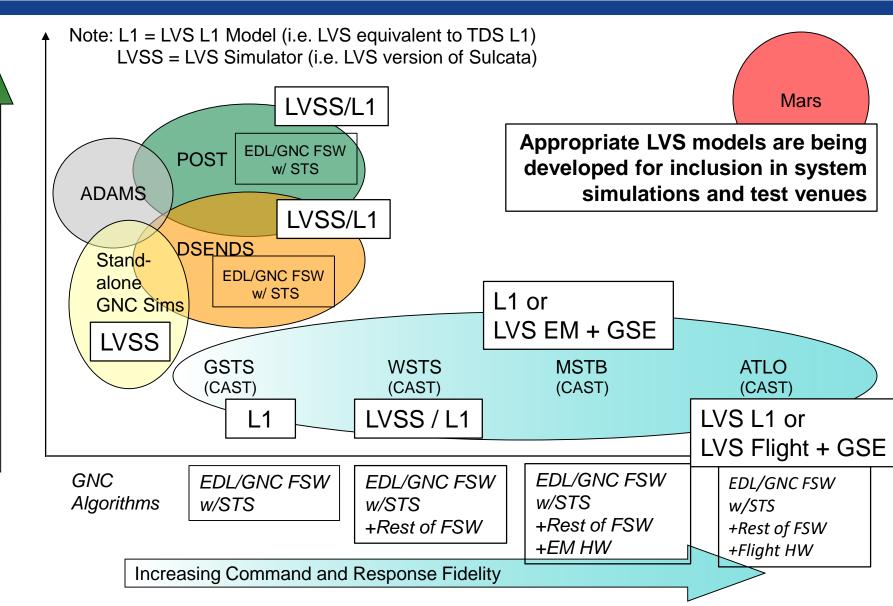
	Full Coverage / Conditions Met Partial	Coverage	•	anditions Not Met		
		Priority	Field Captive Carry	Tests Controlled Descent System	Simulations & Analysis	Hardware Testing
	Real world imaging response	high				
	Relief (up to 50 m)	high	Mars Analogs	Limited	Mars & Earth DEMs	Mars & Earth DEMs
Terrain	Slopes (up to 16 deg)		Mars Analogs	Limited	Mars & Earth DEMs	Mars & Earth DEMs
	Albedo Variation (image entropy 3.0 to 7.5)	high	Mars Analogs	Limited	Mars & Earth imagery	Mars & Earth imagery
	Illumination (sun elevation 25 deg to 55 deg)	high				
	TRN altitude range (2.0 km to 4.2 km AGL)	high		Limited		
Flight	Vertical Velocity (50 m/s to 115 m/s)	high	up to 5 m/s			
Profiles,	Horizontal Velocity (up to 70 m/s)	low		Limited		
Trajectories, and	Off-nadir attitude (up to 45 deg)	high		Limited		
Dynamics	Attitude rates (up to 50 deg/s)	low		Limited		
	# of runs	-	Thousands	Tens	Many many thousands	Thousands
	Hardware pedigree	-	ЕМ	EM	N/A	BB, EM, & Flight
Hardware	Integration with MSL avionics	-			N/A	
	Closed-loop with GN&C	-				
System	Low-level functional insight (standalone)	-				
	Integrated functional insight (system-level)	-			Limited	
	Piecewise integration and physics	-				
	High fidelity integration, physics, and flight profiles in one venue	-				

LVS Integration & Test Flow

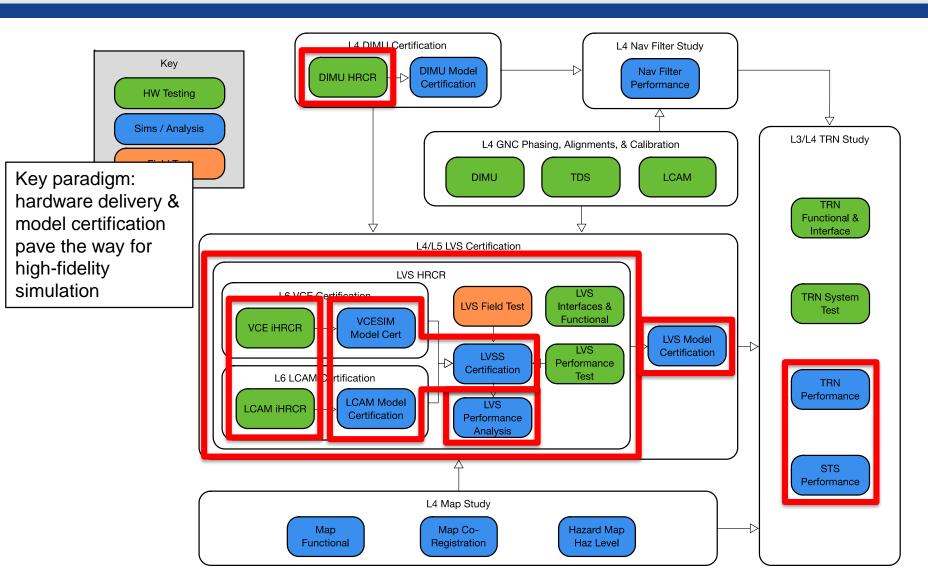

LVS Field Testing

Helicopter, Captive Carry

Helicopter, Controlled Descent System


Helicopter, Captive Carry (Prototype Field Test, 2014)

- Key elements of field testing
 - Realtime operation of EM system over operational envelope
 - Gathering flight-like data sets, including coordinated image, IMU, and GPS truth data → model validation
- Helicopter, Captive Carry
 - Meets all test requirements except for vertical descent velocity with lowest cost and risk
 - This platform was used to successfully verify performance of the LVS Prototype system
- Helicopter, Controlled Descent System
 - Provides increased vertical descent velocity
 - Descoped...further study determined LVS is not susceptible to high vertical velocities and physics involved is covered by other means


Simulation & Analysis

L3-L5 V&V Relationships

Mars 2020 Project

TRN: a new, enabling sensor for Mars 2020

CDR end of FY '17

- V&V philosophy: trifecta approach
 - Hardware testing | EDU & GSE builds in progress
 - Field testing | Planned for April/May '18
 - Simulation & analysis

LVS L1 integrated in EDL system simulation LVSS high fidelity simulation running standalone

- V&V in practice
 - Key paradigm: hardware delivery & model certification pave the way for high fidelity simulation
- Current status Primary risk is schedule

Mars 2020 Project

- Allen Chen et al. (2016) Mars 2020 Entry, Descent, and Landing System Overview, IPPW13 Presentation.
- Aaron Stehura et al. (2015) The Future of Landing: Terrain Relative Navigation From Prototype to Mars 2020, IPPW12 Presentation.
- Paul Brugarolas et al. (2016) On-Board Terrain Relative Safe Target Selection for the M2020 Mission, IPPW13 Presentation.
- James Montgomery et al. (2016) The Mars 2020 Lander Vision System, IPPW13 Presentation.
- Aaron Stehura et al. (2016) Mars 2020 Terrain Relative Navigation Accommodation, IPPW13 Poster.
- Andrew Johnson et al. Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars, AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum, (AIAA 2016-0379).
- Andrew E. Johnson et al. Real-Time Terrain Relative Navigation Test Results from a Relevant Environment for Mars Landing, AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum, (AIAA 2015-0851).

BACKUP

Key Acronyms

•	BB CC	breadboard captive carry	•	HRCR	hardware review certification record
•	CEPCU	compute element power conditioning unit	•	HWIL IP	hardware-in-the-loop image processing
•	CDS CVAC	controlled descent system computer vision accelerator	•	LCAM LVS	LVS camera lander vision system
•	DEM	card digital elevation map	•	LVSS LVSTB	LVS simulation LVS testbed
•	DIMU	descent inertial measurement unit	•	R4R RCE	run for record rover compute element
•	DMCA	descent motor control assembly	•	RPAM	rover power and analog module
•	EDL EDU	entry, descent, and landing engineering development unit	•	PF STM	protoflight safe-to-mate
•	EMC	engineering model electromagnetic compatibility	•	STS TDS	safe target selection terminal descent sensor
•	EMI GN&C	electromagnetic interference guidance, navigation and	•	TRN TVAC	terrain relative navigation thermal vacuum
•	GSE	control ground support equipment	•	VCE V&V	vision compute element verification and validation

TRN = Terrain Relative Navigation Terminology All the new development to avoid known hazards in the landing ellipse STS = Safe Target Selection Picks the safe landing site between a-priori hazards based on the position provided by LVS LVS = Lander Vision System **TRN** The system that performs Map Relative Localization MRL = Map Relative Localization The algorithms that compute position relative to a map LVS STS **MRL VCE VCEFSWE LCAM** RAD750 **CVAC** CEPCU1 VCE = Vision Compute Element The LVS processor containing three cards RAD750 = processor card HK CVAC = Computer Vision Accelerator Card HK = Housekeeping FPGA on CVAC VP-E VP-E = re-programmable Virtex5 FPGA on CVAC with sensor interfaces and image processing CEPCU1 = power conditioning card VCEFSWE = VCE Flight Software for EDL LCAM = LVS Camera, procured from MSSS

Comparison to TDS V&V

- TRN follows the TDS/GN&C V&V example for LVS
 - Similar trifecta (Field Testing, Simulation, Hardware Testing)
 - Similar separation between detailed, low level modeling and behavioral modeling
 - Similar types of tests (interface tests, calibration tests, simulated descents, functional tests, etc.)

LVS

Full Coverage / Conditions Met Partial Coverage No Coverage / Conditions Not Met											
		Priority		Tests Controlled Descent System	Simulations & Analysis	Hardware Testing			Field Test	TDS Simulations	TDS Support Equipment
Terrain	Real world imaging response	high					Terrain	Real-world terrain morphology	Yes	No	No
	Relief (up to 50 m)	high	Mars Analogs	Limited	Mars & Earth DEMs	Mars & Earth DEMs		Real-world backscatter	Yes	Earth DEMs	Earth DEMs
	Slopes (up to 16 deg)	medium	Mars Analogs	Limited	Mars & Earth DEMs	Mars & Earth DEMs			111		
	Albedo Variation (image entropy 3.0 to 7.5)	high	Mars Analogs	Limited	Mars & Earth imagery	Mars & Earth imagery		Mars-like terrain morphology	Earth analogs	Mars DEMs	Mars DEMs
	Illumination (sun elevation 25 deg to 55 deg)	high						Mars-like backscatter	Earth analogs	Yes, with model tools	Limited, Signal Attenuation
	TRN altitude range (2.0 km to 3.7 km AGL)	high		Limited			Flight Dynamics	EDL profiles/trajectories	TAYF to extent possible	Complete	Complete
Flight Profiles, Trajectories, and Dynamics	Vertical Velocity (50 m/s to 115 m/s)	high	up to 5 m/s							·	
	Horizontal Velocity (up to 70 m/s)	low		Limited				# runs/coverage	Limited	Very large, esp POST	Large
	Off-nadir attitude (up to 45 deg)	high		Limited				Hardware pedigree	EM	none	EM & flight
	Attitude rates (up to 50 deg/s)	low		Limited			Hardware				
	# of runs	-	Thousands	Tens	Many many thousands	Thousands		Integration with MSL avionics	No	Limited, No 1553 transactions	Yes
Hardware	Hardware pedigree	-	EM	EM	N/A	BB, EM, & Flight		Closed-loop with GN&C	No	Yes	Yes
	Integration with MSL avionics				N/A					111	
	Closed-loop with GN&C							Low-level functional insight	No	Yes, with model tools	Yes, with BTE
System	Low-level functional insight (standalone)	-						Integrated functional insight	Yes	Limited	Yes, with EGSE
	Integrated functional insight (system-level)				Limited		System	integrated functional morght	100	Ellinica	765, Wall 2002
	Piecewise integration and physics	-						Piecewise integration and physics		Yes	
	High fidelity integration, physics, and flight profiles in one venue							High fidelity integration, physics, and flight profiles in one venue	No	No	No

Model Certification Process

	Model Functional Definition	Model Validation (Physics)	Model Verification (Mathematics)	Plug-In Verification
Objectives	 Define functionality Define required fidelity, if possible Define fidelity for each user Define I/O & ranges, format, units, etc. Define governing equations and/or model validation data List assumptions and applicability limits Define test cases 	 Review intended use/applicability of mathematical description Validate that provided mathematical description accurately represents reality (to the degree we care) Review block diagram for functionality 	Verify standalone model implemented accurately captures mathematical description Review intended use/applicability of model Verify required functionality (out of range flags, etc.)	 Verify model incorporated into simulation correctly Verify user understanding of applicability of model Verify required functions work when plugged in larger sim
Participants	ProviderModelerUsersEDL Systems	ProviderModelerIndependent Subject Matter ExpertEDL Systems	ProviderModelerModeler peerEDL Systems	 Modeler User User peer EDL Systems

- Certification cycle repeated as needed with increasingly detailed input data for model refinement
- Steps may be combined where applicable
- Formality more important when users, modelers, and providers are organizationally or geographically dispersed
- Certification is sum of steps